Excess Thermodynamic Properties of Mixtures of Alkyl Benzoates with *n*-Heptane

A. M. Blanco¹ and J. Ortega¹

Received January 24, 1994

The paper reports $h^{\rm E}$ values at 298.15 K and $v^{\rm E}$ and $\delta\eta$ values at various temperatures for binary mixtures of propyl or butyl benzoate and *n*-heptane. The excess Gibbs energy of viscous flow, $Ag^{*\rm E}$, and the thermodynamic activation properties were calculated from these values. The results are compared with those for similar mixtures and interpreted on the basis of the characteristic dipole-dipole interactions of alkyl esters.

KEY WORDS: binary mixtures; *n*-heptane; methyl esters; thermodynamic properties; viscosity.

1. INTRODUCTION

The present study is a continuation of the ongoing work that we have been conducting for some time on the thermodynamic behavior of ester-containing mixtures [1-3]. This research is of considerable interest because of the usefulness of esters as solvents, and work on mixtures of components of differing types may furnish information on the structural changes in the pure ester that take place during the mixing process. Specifically, to date the behavior of such systems has been investigated by means of such functions as h^{E} , v^{E} , and g^{E} for alkyl esters + *n*-alkanes. However, the viscosity of binary mixtures and, hence, the corresponding apparent excess magnitude also reveal important information about the molecular structure of the components and the intermolecular interactions taking place in the mixtures. We have not previously been able to furnish values of η for alkyl ester-containing mixtures, for which relatively few literature values

¹ Laboratorio de Termodinámica y Fisicoquímica, Escuela Superior de Ingenieros Industriales, Universidad de Las Palmas de Gran Canaria, 35071 Las Palmas de Gran Canaria, Spain.

Property 288.15 K 298.15 K 308.15 K 318.15 K Property Exp. Lit. Exp. 13.05 K 318.15 K n_D Exp. Lit. Exp. Lit. Exp. 318.15 K n_D x_D Lit. Exp. Lit. Exp. x_D . n_D 1.5022 $1.50139[9]$ 1.4982 1.4936 1.4895 10 p (kg·m ⁻¹) 1026.60 $1027.4[9]$ 1.1492 $1017.87[8]$ 1008.83 999.81 10 π (mPa·s) 2.960 2.311 $1017.87[8]$ 1.4895 1.527 10 p (kg·m ⁻³) 1026.60 $1027.4[9]$ 1017.75 $1017.87[8]$ 1008.83 999.81 10 p (kg·m ⁻³) 0.00088 1.4863 999.81 10 n_p (kg·m ⁻³) 1.4985 1.4904 1.527 1.527 n_p (kg·m ⁻³) $1.008.39$ 999.26 991.29 992.55 1.708								
PropertyExp.Lit.Exp.Lit.Exp.Exp.Exp. n^{D} $p(kg \cdot m^{-3})$ 1.5022 $1.50139[9]$ 1.4936 1.4895 1.4895 $\rho(kg \cdot m^{-3})$ 1026.60 $1027.4[9]$ 1.14936 1.4895 999.81 10 $\gamma(mPa \cdot s)$ 2.960 $1027.4[9]$ $1017.87[8]$ 1008.83 999.81 10 $\gamma(mPa \cdot s)$ 2.960 $1027.4[9]$ $1017.87[8]$ 1.4936 1.4895 $\gamma(mPa \cdot s)$ 2.960 $1027.4[9]$ $1017.87[8]$ 1.4936 1.527 $\rho(kg \cdot m^{-3})$ 0.00088 1.4945 1.867 1.527 $\rho(kg \cdot m^{-3})$ 1008.39 999.78 $1003.56[8]$ 991.29 982.65 $\gamma(mPa \cdot s)$ 3.437 2.647 2.647 2.099 1.708		285	8.15 K	298.	15 K	308.15 K	318	8.15 K
n_D Propyl benzoate n_D 1.5022 1.50139[9] 1.4982 1.4895 ρ (kg·m ⁻³) 1026.60 1027.4[9] 1017.75 1017.87[8] 1008.83 η (mPa·s) 2.960 2.311 1017.87[8] 1.4936 1.4895 π (mPa·s) 2.960 2.311 1017.87[8] 1.008.83 999.81 10 π (mPa·s) 2.960 2.311 1017.87[8] 1.367 1.527 μ (mPa·s) 2.960 2.311 1.1867 1.527 1.527 μ (kg·m ⁻³) 0.00088 2.311 1.4945 1.567 1.527 ρ (kg·m ⁻³) 1.008.39 999.78 1003.56[8] 991.29 982.65 η (mPa·s) 3.437 2.647 2.099 1.708	Property	Exp.	Lit.	Exp.	Lit.	Exp.	Exp.	Lit.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				Propyl b	enzoale			
$\sigma_{\rm p}$ (X, $\gamma_{\rm p}$) $\sigma_{\rm control}$ Butyl benzoatc $n_{\rm D}$ 1.4985 1.4904 1.4863 ρ (kg·m ⁻³) 1008.39 999.78 1003.56[8] 991.29 982.65 η (mPa·s) 3.437 2.647 2.699 1.708	n _D ρ (kg·m ⁻¹) η (mPa·s) ξ (K ⁻¹)	1.5022 1026.60 2.960 0.00088	1.50139[9] 1027.4[9]	1.4982 1017.75 2.311	1017.87[8]	1.4936 1008.83 1.867	1.4895 999.81 1.527	1.5056[1] 1063.50[1]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				Butyl be	enzoale			
	ⁿ D ρ (kg·m ⁻³) η (mPa·s) α (K ⁻¹)	1.4985 1008.39 3.437 0.00086		1.4945 999.78 2.647	1003.56[8]	1.4904 991.29 2.099	1.4863 982.65 1.708	

Table 1. Characteristics of Alkyl Benzoates at Different Temperatures

700

are available, [4] although earlier work at our laboratory has dealt with mixtures of methyl or ethyl benzoate and *n*-nonane [5] or *n*-heptane [6].

This paper presents experimental values for the excess volume, $v^{\rm E}$, and apparent excess viscosity, $\delta\eta$, over the temperature range from 288.15 to 318.15 K and enthalpy, $h^{\rm E}$, at 298.15 K for the binary system propyl or butyl benzoate + *n*-heptane. The literature consulted did not yield any $h^{\rm E}$ or $\delta\eta$ values; however, $v^{\rm E}$ values at 298.15 K for the mixtures propyl benzoate + *n*-heptane have been published by Grolier et al. [7] and Dussart et al. [8] and for butyl benzoate + *n*-heptane by Dussart et al. [8].

2. EXPERIMENTAL

The *n*-heptane employed in this study was supplied by Fluka (purity, >99.5 mol %); the alkyl benzoates, by Aldrich (+99 mol %); these components were not subjected to any further purification. However, they were degassed with ultrasound and stored on 0.3-nm molecular sieves (from Fluka) to eliminate all traces of moisture prior to use. The physical characteristics of the hydrocarbon did not differ significantly from the values published earlier [6]. The values for the aromatic esters, for which not many literature values were available for comparison, over the temperature range from 288.15 to 318.15 K are presented in Table I. The values for the density ρ as a function of the temperature T were used to calculate the mean coefficients of the isobaric thermal expansion over the aforementioned temperature range, via the expression $\bar{\alpha} = -(\partial \ln p/\partial T)_{p}$.

The ρ measurements for the pure components and for the mixtures were made with an Anton-Paar Model 60/602 vibrating-tube densimeter with an accuracy of ± 0.002 kg·m⁻³. The kinematic viscosity, ν , were measured by one of us [10] with a Cannon-Fenske viscosimeter with an accuracy of ± 0.003 mPa·s. The $h^{\rm E}$ values were measured with a Calvet Model MS80D microcalorimeter from Setaram with an accuracy of about 1%. The concentrations of mixture ponents for the excess magnitudes $v^{\rm E}$, $\delta\eta$, and $h^{\rm E}$ were calculated with an accuracy of $\pm 2 \times 10^{-4}$. Additional information on the measurement procedures can be found in Refs. 1, 2, 5, and 10.

3. RESULTS

Table II presents the excess enthalpy, h^{E} , at 298.15 K for the binary systems x_1 propyl or butyl benzoate $+ x_2 n$ -heptane and clearly demonstrates the endothermal behavior of these mixtures. The results for these systems displays a good agreement with the values calculated by extrapolation of the values published by Grolier et al. [7] for mixtures of methyl and ethyl benzoate and the same hydrocarbon. The excess properties $v^{\rm E}$ and $\delta\eta$ $(\delta\eta = \eta - x_1\eta_1 - x_2\eta_2)$ for the mixtures at various temperatures between 288.15 and 318.15 K were calculated from the direct measurements of density, ρ , and viscosity, η , as a function of the concentration of the aromatic ester. All these values, together with the excess Gibbs energy of viscous flow calculated with Eq. (1), are presented in Table III.

$$\Delta g^{*E} = RT \left(\ln \eta v - \sum_{i=1}^{2} x_i \ln \eta_i v_i \right)$$
(1)

where the subscript *i* indicates the pure components of the mixture. Letting Y^{E} represent a generic excess function, the excess magnitudes could be correlated with the polynomial equation:

$$Y^{\mathsf{E}} = x_1 x_2 \sum A_i [x_1 / (x_1 + k x_2)]^i$$
⁽²⁾

where the coefficients A_i were calculated for a fixed value of k by a method of least squares with the standard deviation, $s(Y^E)$, as the target function. The fitting procedure was iterated, varying the values of k appropriately until the lowest value of $s(Y^E)$ was attained. Table IV gives the values for fits for all the excess properties (Tables II and III). Those same excess magnitudes have been plotted in Figs. 1, 2, and 3 for comparison.

<i>x</i> ₁	h ^E (J · mol ^{−1})	<i>x</i> 1	h ^E (J · mol ^{− 1})	<i>x</i> 1	h ^E (J · mol ^{− 1}
		Propyl benzo	bate + n-heptane		
0.0485	234.4	0.3930	1028.9	0.6763	850.8
0.1059	457.6	0.4228	1040.8	0.7392	734.0
0.1664	652.5	0.4631	1045.6	0.8118	595.3
0.2269	800.4	0.5078	1038.5	0.8690	413,7
0.2851	904.9	0.5624	1001.3	0.9374	219.1
0.3403	991.1	0.6174	940.7	_	
		Butyl benzo:	ate + n-heptane		
0.0476	236.4	0.3789	905.9	0.6429	787.9
0.0994	415.5	0.4252	918.9	0.6908	721.2
0.1558	586.8	0.4673	921.4	0.7307	659.4
0.2139	721.3	0.5068	909.4	0.7941	533.7
0.2714	816.5	0.5421	879.1	0.8650	367.8
0.3268	877.1	0.5899	831.3	0.9330	198.9

Table II.Excess Molar Enthalpies for the Binaries x_1 Propyl or
Butyl Benzoate + x_2n -Heptane at 298.15 K

Excess Thermodynamic Properties of Mixtures

<i>x</i> ₁	ρ (kg·m ⁻³)	$v^{\rm E} \times 10^6$ (m ³ ·mol ⁻¹)	η (mPa·s)	δη (mPa+s)	Δg^{*E} (kJ·mol ⁻¹)
) + n-heptane	(2)	
	•	Topyr Denzoure (1	, , <i>, , -</i> neptane	(-)	
		288.1	5 K		
0.0990	726.4	-0.118	0.501	-0.189	-0.148
0.1965	762.0	-0.209	0.589	-0.347	-0.205
0.2952	797.3	-0.282	0.700	-0.485	-0.243
0.3950	832.3	-0.338	0.825	-0.611	-0.306
0.4959	866.9	-0.375	0.997	-0.694	-0.313
0.5924	899.2	-0.389	1.214	-0.719	- 0.279
0.6991	934.0	-0.371	1.527	- 0.675	-0.217
0.7981	965.5	-0.310	1.878	-0.573	-0.172
0.8973	996.1	-0.195	2.330	-0.372	-0.107
		298.1	5 K		
0.0000	7163	-0.142	0.444	-0.141	-0145
0.0990	752.0	-0.142	0.444	- 0.141	- 0.145
0.1905	752.0	-0.359	0.510	-0.357	-0.190
0.3950	8776	-0.435	0.707	-0.445	-0.291
0.4959	857.4	-0.485	0.847	-0.503	-0.298
0.4999	889.9	-0.501	1.017	-0.514	-0.256
0.6991	974 9	-0.471	1.254	-0.480	-0.202
0.7981	956.5	-0.389	1.526	-0.399	-0.150
0.8973	987.2	-0.240	1.853	-0.262	-0.101
		308.1	5 K		
0.0000	7076	0.101	0.200	0.104	0.111
0.0990	/0/.6	-0.181	0.399	-0.104	-0.111
0.1905	743.3	-0.521	0.466	-0.185	-0.132
0.2932	//0.0	-0.428	0.531	- 0.209	-0.217
0.3930	010.0	- 0.505	0.014	-0.337	-0.272
0.4939	040.0	-0.548	0.7.34	-0.570	-0.247
0.3924	016.0	-0.333	0.674	-0.370	-0.212
0.0991	910.0	-0.513	1.031	-0.300	-0.194
0.7961	947.0	-0.418	1.246	-0.313	-0.170
0.6775	970.2	-0.235	1.525	-0.187	-0.084
		318.1	5 K		
0.0990	698.9	-0.208	0.358	-0.080	-0.101
0.1965	734.5	-0.357	0.408	-0.148	-0.162
0.2952	769.9	-0.485	0.472	-0.203	-0.190
0.3950	805.0	-0.587	0.550	-0.246	-0.201
0.4959	839.8	-0.647	0.638	-0.280	-0.226
0.5924	872.3	-0.651	0.754	- 0.281	-0.186
0.6991	907.2	-0.587	0.897	-0.266	-0.167
0.7981	938.6	-0.464	1.064	-0.219	-0.124
0.8973	969.2	-0.279	1.266	-0.137	-0.074

Table III. Densities (p), Viscosities (η) , and Excess Properties for the System x_1 Propyl or Butyl Benzoate $+ x_2 n$ -Heptane at Several Temperatures

Blanco and Ortega

<i>x</i> ₁	ρ (kg · m ⁻³)	$v^{\rm E} \times 10^6$ (m ³ ·mol ⁻¹)	η (mPa·s)	<i>δη</i> (mPa ⋅ s)	⊿g* ^E (kJ · mol ^{−1}
_	I	Butyl benzoate (1) + n-heptane (2)	
		288.1	5 K		
0.0994	727.9	-0.139	0.517	-0.222	-0.108
0.1959	763.6	-0.249	0.614	-0.415	-0.170
0.2964	799.3	-0.339	0.750	-0.579	-0.183
0.3986	833.9	-0.405	0.911	-0.724	-0.219
0.4963	865.7	-0.442	1.128	-0.800	-0.187
0.5965	896.8	-0.448	1.407	-0.821	-0.151
0.6954	926.2	-0.417	1.710	-0.814	-0.171
0.7986	955.5	-0.336	2.158	-0.676	-0.122
0.8973	982.2	-0.204	2.698	-0.432	-0.074
		298.1	5 K		
0.0994	718.0	-0.218	0.457	-0.161	-0.103
0.1959	754.0	-0.372	0.536	-0.299	-0.162
0.2964	789.8	-0.480	0.645	-0.417	-0.176
0.3986	824.6	-0.544	0.777	-0.515	- 0.198
0.4963	856.5	-0.571	0.950	-0.562	-0.161
0.5965	887.8	-0.567	1.162	-0.576	-0.135
0.6954	917.4	-0.526	1.411	-0.549	-0.120
0.7986	946.8	-0.433	1.731	-0.462	-0.101
0.8973	973.6	-0.272	2.122	- 0.294	- 0.064
		308.1	5 K		
0.0994	709.2	-0.221	0.410	-0117	-0.072
0.1959	745.2	-0.387	0.476	-0.219	-0.127
0.2964	781.0	-0.514	0 571	-0.300	-0.121
0.3986	815.9	-0.595	0.686	-0.363	-0118
0.4963	847.8	-0.629	0.811	-0.409	-0.135
0.5965	879.1	-0.616	0 978	-0.417	-0114
0.6954	908 7	-0.554	1176	-0.392	-0.093
0.7986	938.1	-0.432	1 413	-0.335	-0.094
0.8973	964.9	-0.254	1.727	-0.193	-0.032
		318.15	ĸ		
0.0994	700.5	-0.256	0.368	-0.089	- 0.059
0.1959	736.5	-0.454	0.426	-0.164	- 0.099
0.2964	772.4	-0.605	0.501	-0.230	-0.120
0. 3986	807.3	-0.700	0.598	- 0.275	-0.106
0. 496 3	839.3	-0.735	0.697	-0.311	-0.134
0.5965	870.6	-0.711	0.835	-0.312	-0.100
0.6954	900.1	-0.630	0.991	-0.294	- 0.087
0.7986	929.4	-0.481	1.192	-0.236	-0.057
0 8973	956.2	-0.276	1.426	-0.140	-0.022

Table III. (Continued)

Excess Thermodynamic Properties of Mixtures

<i>T</i> (K)	k	A ₀		A ₂	s(Y ^E)
		Propyl benzoa	ate + n-heptane		_
		$v^{\rm E} \times 10^6$ (r	$n^3 \cdot mol^{-1}$)		
288.15	0.642	- 1.489	1.132	- 1.905	0.004
298.15	2,344	-1.512	- 1.443	_	0.005
308.15	0.906	-2.071	0.484	-1.384	0.006
318.15	0.204	- 3.080	3.285	-3.241	0.006
		<i>δη</i> (m	ıPa ⋅s)		
288 15	2 141	-1961	- 2 486	_	0.007
298.15	2.056	-1469	-1 583		0.007
308.15	2.030	-1.085	-1.337		0.006
318 15	2.157	- 1.005	- 1.257	_	0.000
516,15	2.000	-0.830	-0.780		0.002
		⊿g*" (J	· mol - ')		
288.15	0.001	- 57.493	56.380	_	0.015
298.15	0.501	-1.532	-0.624	_	0.015
308.15	0.754	-1.072	-0.140	_	0.022
318.15	0.132	- 1.466	-0.713		0.008
$h^{E} (\mathbf{J} \cdot \mathbf{mol}^{-1})$					
298.15	0.600	5071.9	- 1479 1	_	73
270.15	0.000	5671.7	1472.1	_	7.5
		Butyl benzoa	te + n-heptane		
		v ^E × 10 ⁶ (1	$m^3 \cdot mol^{-1}$)		
288.15	2 1 2 2	-1472	-0.942	_	0.004
200.15	1 356	-2.558	1 696	- 2 508	0.005
308.15	4.812	_ 2.550	-0.572		0.005
318 15	7.812	_ 2.422	-0.207	_	0.006
510.15	2.402	074	-0.207		0.000
		δη (π	nPa · s)		
288.15	2.622	-2.371	- 3.047		0.008
298.15	2.874	-1.764	- 1.893	_	0.003
308.15	1.979	-1.237	-1.168	_	0.006
318.15	1.307	-0.925	-0.712	-	0.002
		6	1-15		
		<i>∆g</i> * ^e (J	- mol - ')		
288.15	0.096	- 1.917	1.239	_	0.016
298.15	0.199	-1.610	1.113		0.013
308.15	0.078	-1.525	1.091	_	0.013
318.15	0.971	- 0.695	0.433	—	0.009
		h ^E (J ⋅ ı	mol ⁻¹)		
298.15	0.334	5268.7	-2187.9	_	5.8

Table IV. Coefficients k and A_i and Standard Deviations Obtained for Eq. (2)

Fig. 1. Representation of excess enthalpies, $h^{\rm E}$, and excess free activation energy of viscous flow, $Jg^{+\rm E}$, at 298.15 K for the binaries $x_1C_6H_5COOC_uH_{2u+1}$ (u=3,4) + $x_2n-C_7H_{16}$ obtained with Eq. (2) and coefficients in Table IV. (---) u=3; (---) u=4.

Fig. 2. Representation of excess molar volumes, v^{E} , for x_1 propyl (-----) or butyl (-----) benzoate + x_2n -heptane at different temperatures. (----) Values from Dussart et al. [8] for the same mixtures.

Fig. 3. Representation of apparent excess viscosities, $\delta \eta$, for x_1 propyl (---) or butyl (---) benzoate + $x_3 n$ -heptane at different temperatures.

Some excess volumes at 298.15 K have been found in the literature for the mixtures considered. Our values for propyl benzoate + *n*-heptane show a difference of approximately 16% with respect to those reported by Dussart et al. [8]; for the values for butyl benzoate + *n*-heptane the difference with respect to those reported by Grolier et al. [7] and Dussart et al. [8] is somewhat higher, about 23%. These differences correspond to discrepancies of about ± 0.008 cm³·mol⁻¹ between the values for $v^{\rm E}$ calculated from the density by those authors [7, 8] and those calculated by us.

Since $v^{\rm E}$ and $\delta\eta$ values were available for the mixtures over a range of temperatures, we were able to extend our analysis by calculating the thermodynamic activation properties, Δh^* and Δs^* , and consequently Δg^* , based on the activated complex theory of Eyring et al. [11], using the equation

$$\eta = -\frac{hN}{v} \exp[\left(\Delta h^*/RT\right) - \left(\Delta s^*/R\right)]$$
(3)

where $\Delta g^* = \Delta h^* - T \Delta s^*$. The values for these properties are presented in Table V.

		⊿g* (kJ	• mol ^{– 1})		.As *	∆h*
<i>x</i> ₁	288.15 K	298.15 K	308.15 K	318.15 K	$(\mathbf{J}\cdot\mathbf{K}^{-1}\cdot\mathbf{mol}^{-1})$	(kJ · mol - 1)
		Propyl	benzoate (1) + <i>n</i> -heptar	ne (2)	
0.0000	61.8	63.7	65.6	67.5	- 189.2	7.3
0.0990	62.1	64.0	65.9	67.8	- 189.7	7.5
0.1965	62.6	64.4	66.3	68.2	- 188.5	8.2
0.2952	63.0	64.9	66.7	68.6	- 187.0	9.1
0.3950	63.4	65.3	67.1	69.0	-187.0	9.5
0.4959	63.9	65.7	67.6	69.4	- 185.4	10.4
0.5924	64.4	66.2	68.1	69.9	-184.2	11.3
0.6991	64.9	66.8	68.6	70.4	-181.0	12.8
0.7981	65.5	67.2	69.0	70.8	-179.2	13.8
0.8973	66.0	67.8	69.6	71.3	- 177.8	14.8
1.0000	66.6	68.3	70.1	71.9	- 175.2	16.1
		Butyl	benzoate (1) + n-heptan	e (2)	
0.0000	61.8	63.7	65.6	67.5	- 189.2	7.3
0.0994	62.2	64.1	66.0	67.9	- 189.5	7.6
0.1959	62.7	64.6	66.5	68.4	-188.7	8.3
0.2964	63.2	65.1	67.0	68.8	- 187.1	9.3
0.3986	63.7	65.6	67.5	69.4	- 187.3	9.8
0.4963	64.3	66.1	68.0	69.8	- 183.5	11.4
0.5965	64.9	66.7	68.5	70.3	- 181.8	12.5
0.6954	65.4	67.2	69.0	70.8	181.3	13.1
0.7986	66.0	67.8	69.6	71.4	- 178.9	14.4
0.8975	66.6	68.3	70.1	71.9	- 177.3	15.5
1.0000	67.2	68.9	70.7	72.4	-173.8	17.1

Table V. Activation Parameters for x_1 Propyl or Butyl Benzoate + x_2n -Heptane

4. DISCUSSION

The values for the different excess properties presented in this paper highlight important aspects of the behavior of alkyl benzoate + *n*-heptane mixtures. First, the endothermal nature of the mixtures due to the formation of induced dipole-dipole complexes between the benzoate and the hydrocarbon. The values of $h^{\rm E}$, like those of $v^{\rm E}$ and $\delta\eta$, decrease with increasing chain length of the aromatic ester. The volume contracts, i.e., $v^{\rm E} < 0$, considerably as the temperature increases, thereby facilitating interstitial accommodation of the hydrocarbon molecules among the benzoate molecules. The opposite effect was recorded for the $\delta\eta$ values.

The Δg^{*E} values for these mixtures, like those for the mixtures considered in previous works [5, 6], are negative and decrease slightly with

Excess Thermodynamic Properties of Mixtures

increasing temperature. The negative Δg^{*E} values also decrease with increasing hydrocarbon chain length of the benzoate, which is a clear indicator that a breakdown of the dipolar order of the alkyl benzoate $C_6H_5COO-R_1$ requires less energy as the chain length of R_1 increases, as discussed previously by Oswal and Dave [4]. Our data do not provide a sufficient basis for establishing the specific effects that may be brought about by the presence of an aromatic ring.

As for the activation properties, the negative entropy values, Δs^{\neq} , yield a picture of increasing molecular order or arrangement, and these values decrease slightly as the *n*-alkane concentration is increased. In contrast, the activation enthalpy, Δh^{\neq} , for the mixtures increases as the ester concentration rises and is somewhat higher as R_1 increases due to the geometric effects caused by the voluminosity of the alkyl benzoate.

ACKNOWLEDGMENT

This research was supported by Project PB092-0559 (DGICYT, MEC, Spain).

NOMENCLATURE

A_i	Parameters in Eq. (2)
∆g* ^E	Gibbs free energy of viscous flow $(J \cdot mol^{-1})$
∆g≠	Activation free energy $(kJ \cdot mol^{-1})$
Κ	Parameter in Eq. (2)
h	Planck constant
h ^E	Excess enthalpy $(J \cdot mol^{-1})$
∆h≠	Activation enthalpy $(kJ \cdot mol^{-1})$
Ν	Avogadro number
R	Universal gas constant (J · K ⁻¹ · mol ⁻¹)
\$	Standard deviation
∆s≠	Activation entropy $(J \cdot K^{-1} \cdot mol^{-1})$
Т	Temperature (K)
v	Molar volume of pure component $(m^3 \cdot mol^{-1})$
v ^E	Excess volume $(m^3 \cdot mol^{-1})$
X_i	Mole fraction of component i

Greek Letters

- α Expansion coefficient (K⁻¹)
- ρ Density (kg m⁻³)
- η Viscosity (mPa · s)
- $\delta \eta$ Apparent excess viscosity (mPa · s)

REFERENCES

- I. J. Ortega, E. Gonzalez, J. S. Matos, and J. L. Legido, J. Chem. Thermodyn. 24:15 (1992).
- 2. J. Ortega and R. Alcalde, Fluid Phase Equil. 71:49 (1992).
- 3. J. Ortega and J. L. Legido, Fluid Phase Equil. 86:251 (1993).
- 4. S. L. Oswal and J. P. Dave, Int. J. Thermophys. 13:943 (1992).
- 5. B. Garcia, M. J. Miranda, J. M. Leal, J. Ortega, and J. S. Matos, *Thermochim. Acta* 186:285 (1991).
- 6. A. M. Blanco, J. Ortega, B. Garcia, and J. M. Leal, Thermochim. Acta 222(1):127 (1993).
- 7. J.-P. E. Grolier, D. Ballet, and A. Viallard, J. Chem. Thermodyn. 6:895 (1974).
- 8. O. Dussart, C. Piekarski, S. Piekarski, and A. Viallard, J. Chim. Phys. 73:837 (1976).
- 9. J. A. Riddick, W. B. Bunger, and T. K. Sakano, Organic Solvents, Techniques of Chemistry, 4th ed. (Wiley Interscience, New York, 1986).
- 10. A. M. Blanco, Thesis Licenciatura (Universidad Valladolid, 1989).
- 11. H. Eyring, R. E. Powell, and W. E. Roseware, Ind. Eng. Chem. 33:837 (1991).